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1 Introduction

String compactifications on simple, symmetric backgrounds produce in general several

or many massless scalar fields of geometric origin called moduli. The perception of

their role in a description of particle physics from a fundamental superstring theory is

ambivalent. On one side, they are welcome since we may expect to obtain new scales

and parameters from their expectation (or background) values. This is useful since

string theory has very few fundamental parameters and we need to find an origin for

the quantities appearing as parameters of the standard model. Secondly, we need to

understand these spontaneously generated scales and parameters to obtain a predictive

theory and we also need to give masses to the moduli, to avoid phenomenologically

unwanted massless or very light scalar fields. Generating in the superstring theory

background values and masses of the moduli fields is the problem of moduli stabilization.

In a compactification to four dimensions with a residual N = 1 supersymmetry, as

in models relevant to phenomenology, moduli can be stabilized if an appropriate super-

potential is generated in the process. Also, since the mechanism of (low-energy) spon-

taneous supersymmety breaking is strongly affected by the presence and the structure

of an effective superpotential, the problems of moduli stabilization and supersymmetry

breaking are deeply related.

Various sources of superpotentials have been identified. Firstly, it has been rec-

ognized many years ago that background values of the three-form field present in the

massless spectrum of heterotic strings lead to a superpotential [1, 2]. This flux of

the three-form field is compatible with field equations and supersymmetry variations

of the ten-dimensional theory. Simultaneously, it was found that this “perturbative”

superpotential can be supplemented by a non-perturbative contribution generated by

gaugino condensates [1, 3]. Scherk-Schwarz compactifications [4] produce in general

moduli-dependent superpotentials. More recently, models based on type II orientifolds

with their D–brane systems have been of primary interest also because of the richness

of their NS–NS and R–R fluxes.

As in many physics problems where the fundamental theory is not sufficiently un-

derstood, the problem of moduli stabilization can be approached using (at least) two

complementary methods. The first approach is to solve the string equations for spe-

cific backgrounds or classes of backgrounds. It provides a derivation of the effective

superpotential for these classes of vacua. While rigourous and satisfactory, this method

does not provide a general study of the problem. In addition, switching on fluxes often

transforms a simple compactification into a hardly solvable problem of geometry. A

vast literature has been devoted to studies of compactifications with fluxes in many
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classes of superstring backgrounds.1 This approach of the moduli problem is not the

subject of the present notes.

The second approach uses four-dimensional effective Lagrangians. The idea un-

derlying the effective field theory method is to translate the known properties, and

in particular the symmetry content, of the underlying fundamental theory into con-

straints on a field theory description of the light (four-dimensional) modes only. This

effective field theory is then a tool to investigate various aspects of the expected low-

energy physics predicted by the fundamental theory. It is also used to isolate the

situations relevant to phenomenology and then the classes of vacua deserving a full-

fledged, ten-dimensional study. The effective Lagrangian approach can be viewed as a

bottom-up approach, in contrast to the top-down method provided by direct studies of

compactifications with fluxes in classes of string vacua.

Superstring vacua relevant to phenomenology have sixteen supercharges. This large

class of solutions includes in particular heterotic (and type I) strings and type II orien-

tifolds. In four dimensions, sixteen supercharges lead to N = 4 supergravity coupled

to the N = 4 super-Yang-Mills system. This theory has a severely restricted structure.

The sigma-model defining its scalar sector is for instance unique. In fact, the only

freedom to introduce parameters in N = 4 supergravity resides in the choice of gaug-

ing applied to its vector fields and multiplets. Hence, a gauged N = 4 supergravity

treatment of the massless modes of superstring compactifications, supplemented with

a breaking mechanism to N = 1 for potentially realistic compactifications, seems an

appropriate starting point for an effective Lagrangian description of string compactifi-

cations: it is expected that the gauging parameters of the effective N = 4 supergravity

theory encode the data of underlying string vacua, including non-trivial fluxes. This

approach of N = 4 supergravity gaugings used for the derivation and study of mod-

uli superpotentials has been developed in ref. [6]2, and expanded to the inclusion of

non-perturbative gaugino condensates in ref. [8].

The purpose of the present notes3 is to describe the method of supergravity gaugings

in relation with the effective description of string moduli physics. They do not however

discuss the application of the method to the study of specific physics problems or classes

of compactifications with fluxes. The next four sections describe in general terms

various aspects of field theory and supergravity gaugings, starting with elementary

considerations. After a detailed discussion of the relevant aspects ofN = 4 supergravity

(section 6), the specific use of N = 4 supergravity gaugings to describe moduli effective

supergravities is the subject of sections 7, which discusses in a simple orbifold the

1For a recent review and references, see [5].
2Expanding on a formalism used in an earlier study of finite-temperature superstring phases [7].
3Which follow from a lecture primary devised for PhD students and young postdocs.
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reduction to N = 1 supergravity, and 8 where the identification of string moduli in

terms of N = 1 superfields is studied.

2 Gauging, elementary facts

We begin with some very simple facts from gauge theory, slightly rephrased in view of

the needs of the next sections.

Consider a Lie algebra with (real) structure constants fAB
C = −fBA

C . For any

representation with generators TA, the Lie algebra is

[TA, TB] = fAB
CTC . (1)

With this convention, (finite-dimensional) representations of the algebra of a compact

group have antihermitian generators. The Jacobi identity [[TA, TB], TC ]+[[TC , TA], TB]+

[[TB, TC ], TA] = 0 leads to

fAB
DfDC

E + fCA
DfDB

E + fBC
DfDA

E = 0, (2)

which also implies

fAB
DfDE

E = 0. (3)

A generic set of fields φj would infinitesimally transform according to

δφj = ΛA(TA)j
kφ

k,

with infinitesimal parameters ΛA(x). Covariant derivatives use gauge fields Aµ = AA
µTA

as connections:

Dµφ
j = ∂µφ

j − AA
µ (TA)j

kφ
k. (4)

Their variation is

δAA
µ = ∂µΛA + fBC

AΛBAC
µ , δAµ = ∂µΛ + [Λ, Aµ]. (5)

The generators of the adjoint representation can be defined as

(TA)B
C = fAC

B. (6)

Traceless generators, as in semi-simple algebras, automatically verify condition (3). If

φj is in the adjoint representation (it is then φA),

δφA = fBC
AΛBφC , δφ = [Λ, φ],
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as in the second term in δAA
µ . It follows that the gauge curvatures

Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ],

FA
µν = ∂µA

A
ν − ∂νA

A
µ − fBC

AAB
µA

C
ν

(7)

transform in the adjoint representation,

δFµν = [Λ, Fµν ], δFA
µν = fBC

AΛBFC
µν . (8)

The propagation of physical gauge degrees of freedom is controlled by a Lagrangian

quadratic in the curvatures:

Lkin. = −1

4
eNAB F

A
µνF

B µν , (9)

where the kinetic metric NAB is symmetric and non-degenerate to propagate all gauge

fields.4 Imposing gauge invariance, which ensures that two states with helicities ±1

propagate for each vector field, leads to the equation

δLkin. = −1

2
NAB F

A
µνδF

B µν =
1

2
FA

µνF
B µνΛC

(
fCB

DNDA

)
= 0

for arbitrary parameters ΛC . The quantity in parentheses should then be antisymmetric

under A↔ B, which is the condition imposed on NAB by gauge invariance:

fCA
DNDB + fCB

DNDA = 2fC(A
DNB)D = 0 . (10)

Defining

f̂ABC = fAB
DNDC = −f̂BAC , fAB

C = f̂ABDNDC , (11)

where NAB is the inverse of NAB (which is nondegenerate), condition (10) requires full

antisymmetry of the quantities f̂ABC , which are not structure constants of the gauge

algebra since the kinetic metric is in general an arbitrary solution of eqs. (10) or (11).

There is a well-known particular solution. Consider a simple Lie algebra. For an

arbitrary representation R, define

Tr(TATB) = −T (R) gAB (12)

where T (R) is the Dynkin index of representation R and gAB is the Cartan metric.5

For a simple algebra, gAB is non degenerate.6 For the adjoint representation

T (Adj.) gAB = −fAC
DfBD

C , (13)

4In a quantum field theory, positivity of NAB is required.
5There is a normalisation ambiguity in the generators and in the Dynkin indices.
6In our conventions, it is positive for compact semi-simple groups.
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and T (Adj.) = C(G), the quadratic Casimir number of the algebra G. Define then

fABC = fAB
D gCD. (14)

The identity Tr([TA, TB]TC) = Tr([TB, TC ]TA) = Tr([TC , TA]TB) leads to

fAB
DgDC = fBC

DgDA = fCA
DgDB,

and the structure constants fABC , as defined in eq. (14), are completely antisymmetric.

The natural solution to condition (10) for a simple gauge group is then to identify

NAB =
1

g2
gAB. (15)

Choosing gAB to have eigenvalues ±1, the real number g is the gauge coupling constant

of the theory. The extension of this solution to a semi-simple algebra is obvious: there

will be one arbitrary gauge coupling constant for each simple factor. Eq. (15) cannot

be used for algebras with a degenerate Cartan metric, which are irrelevant to quantum

field theory where eq. (15) applies, but are of central interest in gauged supergravities.7

Condition (10) can also be read as a condition of the admissible gaugings for a

given metric. This is more commonly the case in the context of extended supergravity

theories where the abelian (ungauged) theory has a kinetic metric dictated by the

electric-magnetic duality group G of the theory. Eq. (10) should then be regarded

as the invariance of the metric NAB under gauge transformations which belong to a

subalgebra of the global symmetry group G of the kinetic terms (9). The structure

constants fAB
C are tensors with mixed symmetries under this symmetry group.

3 Vector and scalar fields in supergravity theories

All N–extended four-dimensional supergravity theories (4N supercharges) include vec-

tor fields either in the gravity supermultiplet (2 ≤ N ≤ 8) or in the vector super-

multiplet (1 ≤ N ≤ 4)8. The Lagrangian describing the supersymmetric interactions

trivially possesses the required abelian gauge symmetry U(1)m (m is the number of

vector fields). It also includes in general non-minimal couplings of the gauge potentials

to other fields (interactions depending on their curvature instead of minimal couplings

with covariant derivatives). In particular, the kinetic metric NAB may become a func-

tion of scalar fields.

The presence of a number of gauge fields opens the possibility of extending the

abelian symmetry to a non-abelian gauge algebra, with the required covariantizations

7For a more complete discussion of the consequences of condition (10), see Ref. [9].
8Tensor or linear multiplets will not be considered here.
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of derivatives, couplings and transformations used in the dynamical description of the

fields. The procedure of extending U(1)m to a non-abelian algebra is the gauging of

the theory.9

Four-dimensional supergravity theories also include scalar fields in their gravity

multiplet (4 ≤ N ≤ 8), in their vector multiplet (2 ≤ N ≤ 4), in the N = 2 hypermul-

tiplet or in the N = 1 chiral multiplet. In each case, the scalar kinetic Lagrangian is

characterized by a specific sigma-model structure,

−1

2
e gij (Dµϕ

i)(Dµϕj),

where the possible choices for the metric gij(ϕ
k) strongly depend on the supermultiplets

under consideration. We will be mostly concerned here with N = 4 supergravity

coupled to vector supermultiplets, or with the N = 8 theory. In these cases, the scalar

fields live on a coset G/H. In addition, G is a duality symmetry of the theory (see

below): it acts as a global symmetry of the field equations and Bianchi identities of the

abelian gauge fields. Its maximal compact subgroup H is a (local) linear symmetry

of the scalar interactions. In the N = 4 theory with n vector multiplets, the scalar

manifold is the coset
SU(1, 1)

U(1)
× SO(n, 6)

SO(n)× SO(6)
,

with dimension 2+6n. The theory includes 6+n vector fields and the duality symmetry

SU(1, 1)× SO(6, n) ⊂ Sp(12 + 2n,R) acts (linearly) on the 12 + 2n gauge curvatures

and on their duals. Gauging the theory does in general break the duality symmetry.

Notice for future use that the truncation to N = 4 of the N = 8 (ungauged) theory,

with duality symmetry E7,7 leads to six vector multiplets, with embedding

E7,7 ⊃ SU(1, 1)× SO(6, 6)

56 = (2,12) + (1,32′), 133 = (3,1) + (1,66) + (2,32),

where 32 and 32′ are the two spinors of SO(6, 6).

4 Electric-magnetic duality

In the ungauged version of N ≥ 4 supergravity (in four dimensions), the symmetry

group G of the scalar manifold G/H is also a duality symmetry acting on the abelian

gauge curvatures and their duals. This is possible because the couplings of gauge fields

are of non-minimal type depending on the curvatures only.10 A nonabelian gauging

9Even if allocating non-trivial abelian charges to some fields of the theory, with the appropriate
covariantization of derivatives, is also a gauging.

10The supergravity theories discussed here describe interactions with at most two derivatives. They
include terms linear and quadratic in FA

µν and F̃A
µν .
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of the theory breaks the duality symmetry: the explicit dependence on AA
µ of gauge

curvatures and covariant derivatives of (non-singlet) fields modifies the field equations

and Bianchi identities.

If the Lagrangian depends on the vector fields AA
µ (A = 1, . . . ,m) only through the

abelian curvature FA
µν , the Euler-Lagrange equation

∂µG̃A
µν = 0, G̃A

µν ≡ −2
δL

δFA µν
(16)

and the Bianchi identity

∂µF̃A
µν = 0, F̃A

µν =
1

2
εµνρσF

A ρσ (17)

are left invariant by Gl(2m,R) linear transformations

(FA
µν , G

A
µν) −→ (FA ′

µν , G
A ′
µν).

In addition, the Lagrangian L should simultanously transform into L′ in such a way

that

G̃A ′
µν = −2

δL′

δFA µν ′ .

A similar condition of covariance applies to other field equations. As a consequence,

Gaillard and Zumino [10] showed that the duality group reduces to Sp(2m,R) and that

the Lagrangian has a universal (although implicit) expression,

L = −1

4
FA

µνG̃
A µν + Linv., (18)

where Linv. depends in general of all fields. The true duality group G ⊂ Sp(2m,R) of

the theory leaves then Linv. invariant. It is in general smaller that Sp(2m,R) since G

should also act on other fields to lead to a nontrivial invariant Linv..

In N–extended supergravity theories with scalars on coset G/H, G is expected to

be the electric-magnetic duality group of the ungauged theory. Hence, G = E7,7 for

the N = 8 theory, which has 28 vector fields. The embedding Sp(56, R) ⊃ G is simply

56 = 56. For the N = 4 theory with n vector multiplets (and m = n + 6 vector

fields), G = SU(1, 1)× SO(n, 6). The embedding Sp(12 + 2n,R) ⊃ G is then defined

by 12 + 2n = (2,6 + n).

Transformations of the duality group relate different Lagrangians with however

equivalent field equations. In particular, the role of some (electric) gauge fields Fµν

may be exchanged with their (magnetic) duals F̃µν . Equivalent dynamical field equa-

tions are then described by Lagrangians corresponding to various choices of symplectic

frames and related by duality transformations, which are symplectic Sp(2m,R) trans-

formations.
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Starting with an ungauged supergravity with m gauge fields, one can in principle

choose to gauge a non-abelian algebra acting on the curvatures Fµν and on the duals,

provided certain consistency conditions are applied. In particular, the resulting theory

should propagate the same degrees of freedom required by supersymmetry as the un-

gauged theory. This approach recently developed by de Wit, Samtleben and Trigiante

[11] allows to discuss gaugings of extended supergravity theories in very general terms.

In addition, this formulation respects the electric-magnetic duality symmetry which is

so useful in the construction of extended supergravity Lagrangians. One should how-

ever notice that gauged supergravities described in the literature are necessarily written

in a certain symplectic frame (which breaks the electric-magnetic duality symmetry).

A comparison with the general gauging procedure derived with the method of ref. [11]

requires to find the duality transformation relating both formulations.

In Section 5, we will briefly describe this general method and its use in the context

of gauged N = 4 supergravity.

4.1 The duality algebra Sp(2m, R)

The Lie algebra of Sp(2m,R), in the fundamental representation 2m, can be repre-

sented by real matrices P such that

P τΩ + ΩP = 0, (19)

where Ω = −Ωτ = −Ω−1 is the symplectic metric. The standard choice is

Ω =

(
0 Im
−Im 0

)
(20)

(Im is the identity matrix in m dimensions), but this is not necessarily the most con-

venient for our purposes. Clearly, ΩP is symmetric, or, with choice (20),

P =

(
A B
C −Aτ

)
(21)

with A arbitrary, B and C symmetric.

Some subalgebras will be useful. Firstly, Sp(2m,R) ⊃ Sp(2, R)m. The 3m pa-

rameters of this subalgebra correspond to diagonal matrices A, B and C. Secondly,

Sp(2m,R) ⊃ SU(1, 1)× SO(p, q) for all p and q such that p+ q = m. This subalgebra

is directly relevant to N = 4 supergravity and will be described in the next paragraph.

Thirdly, the maximal compact subalgebra U(m) corresponds to

PU(m) =

(
A B
−B A

)
= −PU(m)

τ , (22)
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with B symmetric and A antisymmetric.

As a duality algebra, Sp(2m,R) acts on FA
µν and GA

µν according to

δ(F , G ) = (AF +BG , −AτG+ CF ).

An electric duality is such that starting with a Lagrangian depending on the FA
µν only

(and not on the F̃A
µν), the transformed theory also does not depend on the (transformed)

GA
µν . Since the gauge algebra is included in Sp(2m,R), an electric gauging of a given

Lagrangian uses only generators with B = 0. Notice that C does not need to be zero.

As a simple example, consider m = 1 and theory

L = −1

4
FµνF

µν = −1

4
FµνG̃

µν , ( G̃µν = F µν ). (23)

The variation under Sp(2, R) with B = 0 is

δL = −1

4
C FµνF̃

µν , (24)

i.e. C generates axionic symmetries, which can in principle be gauged. Standard gaug-

ings of quantum field theory, as outlined in Section 2, are invariances of the Lagrangian

with B = C = 0. In this case, the gauged algebra is included in the SO(m) global

symmetry of gauge kinetic terms11 generated by the antisymmetric A.

4.2 The duality algebra of N = 4 supergravity: SU(1, 1) ×
SO(n, 6)

For a theory withm vector fields, the electric-magnetic duality algebraG is a subalgebra

of Sp(2m,R) and the gauge algebra is included in G. As already mentioned, in the

case of N = 4 supergravity with n vector supermultiplets (i.e. with m = 6 + n vector

fields),

G = SU(1, 1)× SO(n, 6) ⊂ Sp(12 + 2n,R).

To realize the SU(1, 1) × SO(p, q) subalgebra of Sp(2m,R), it is useful to replace

the symplectic metric (20) by

Ω =

(
0 1
−1 0

)
⊗ η =

(
0 η
−η 0

)
, (25)

where η = ητ = η−1 is the SO(p, q) metric with p eigenvalues +1 and q = m − p

eigenvalues −1. Its diagonal form would be η = diag(Ip,−Iq) but we will not need to

11The symmetry is SO(m) and not SO(p, q) because positivity of the kinetic metric is required in
quantum field theory.
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assume that η is diagonal. An element of the SO(p, q) algebra (in the vector represen-

tation m) is a matrix O such that ηO is antisymmetric. In other words, O = ηM with

M antisymmetric. The solution of the Sp(2m,R) defining equation (19) is now

P =

(
ηA ηB
ηC −ηAτ

)
, (26)

again with A arbitrary, B and C symmetric. Choosing A = αη, B = βη and C = γη

(α, β and γ are real numbers) leads to the Sp(2, R) ∼ Sl(2, R) ∼ SU(1, 1) subalgebra

generated by

PSU(1,1) =

(
αIm βIm
γIm −αIm

)
=

(
α β
γ −α

)
⊗ Im. (27)

It commutes with elements of Sp(2m,R) of the form

PSO(p,q)) =

(
ηM 0
0 ηM

)
= I2 ⊗ ηM, M τ = −M, (28)

which generate the SO(p, q) algebra. Strictly speaking, SO(p, q), with its block-

diagonal form, is not an electric-magnetic duality symmetry. In N = 4 supergravity, it

is a global symmetry of the (ungauged) action.

The SU(1, 1)×SO(p, q) decomposition of Sp(2m,R) is then as follows. In expression

(26), split the matrices according to

A = A− + A0 +
1

m
Tr(ηA) η, B = B0 +

1

m
Tr(ηB) η, C = C0 +

1

m
Tr(ηC) η,

with A− antisymmetric while the symmetric matrices A0, B0 and C0 have zero “η–

trace”, 0 = Tr(ηA0) = Tr(ηB0) = Tr(ηC0). This leads to

P =
1

m

(
Tr(ηA) Tr(ηB)
Tr(ηC) −Tr(ηA)

)
⊗ Im + I2 ⊗ ηA− +

(
ηA0 ηB0

ηC0 −ηA0

)
. (29)

The first two terms generate the H ≡ SU(1, 1) × SO(p, q) subalgebra. The third one

includes the generators of the coset Sp(2m,R)/G (with 3[1
2
m(m+1)− 1] parameters),

which is absent in the duality symmetry of N = 4 supergravity, and then also in the

gauge algebra of N = 4 supergravity. The compact U(1) subgroup of SU(1, 1) is

PU(1) =

(
0 β
−β 0

)
⊗ Im . (30)

This U(1) defines the complex basis required by the Kähler structure of the N = 4

supergravity dilaton. If on the real basis (F,G),

δ

(
F
G

)
= P

(
F
G

)

10



as in eq. (29), then SU(1, 1)× SO(p, q) acts on F ± iG according to

δ

(
F + iG
F − iG

)
=

{(
ia b+ ic

b− ic −ia

)
⊗ Im + I2 ⊗ ηA−

}
δ

(
F + iG
F − iG

)
(31)

with a, b, c real and the compact U(1) is diagonal.

It may be useful to write component expressions for the generators of SU(1, 1) ×
SO(p, q) in the basis defined by expression (29). Write then

(
PG

)
αI

βJ
=

1

2
αγδ(Tγδ)α

β δJ
I +

1

2
αKL(TKL)I

J δβ
α (32)

with SU(1, 1) indices α, β, . . . = 1, 2 and SO(p, q) indices I, J, . . . = 1, . . . ,m, and real

parameters αγδ = αδγ and αKL = −αLK . Use then

(Tγδ)α
β = εγαδ

β
δ + εδαδ

β
γ , (ε12 = 1, εδβ = −εβδ),

(TKL)I
J = ηKIδ

J
L − ηLIδ

J
K

(33)

as generators of SU(1, 1) and SO(p, q). Notice that SU(1, 1) is represented in a real

space. In this basis, the symplectic metric (25) reads

(Ω)αI βJ = εαβ ηIJ . (34)

As it should, it is left invariant by generators (33).

With choice (33) of SU(1, 1)×SO(n, 6) generators, an electric gauging does not in-

volve the SU(1, 1) generator Tα=2 β=2 and axionic symmetries have generators involving

Tα=1 β=1.

A gauging of N = 4 supergravity proceeds then by selecting linear combinations of

the generators (33) to represent the embedding of the gauge algebra inside the duality

algebra G.

5 Gauging: the embedding tensor

Very schematically, the gauging procedure developed in ref. [11] is as follows. Assume

that the duality algebra G ⊂ Sp(2m,R) of a given theory has generators TA acting in

the fundamental representation of Sp(2m,R) (indices M,N,P, . . .), with

[TA, TB] = fAB
C TC , fAB

C = −fBA
C , (TA)]M

P ΩN ]P = 0. (35)

Since the gauge algebra is a subalgebra of G, we may choose combinations

XM = ΘM
A TA , (36)
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where ΘM
A is the embedding tensor, to define its generators. The index M reflects the

embedding [adjoint of the gauge algebra] ⊂ [fundamental of Sp(2m,R)]. Closure of

the gauge algebra is the equation

[XM , XN ] = XMN
PXP = XMN

P ΘP
A TA . (37)

The constant numbers XMN
P form a tensor under G. As usual [see eq. (6)], the matrix

elements of the gauge generators are (XM)P
N = XMP

N . Eq. (37) implies firstly a linear

constraint on the embedding tensor:

X(MN)
P ΘP

A = 0. (38)

The antisymmetric part X[MN ]
P ΘP

A defines the structure constants of the gauge al-

gebra, X[MN ]
PXP = fMN

PXP . The closure of the gauge algebra (37) also implies

quadratic constraints on the embedding tensor which can be regarded as generalized

Jacobi identities.

Consistency of the procedure, including the existence of a Lagrangian propagating

the correct number of states (i.e. m states with helicities ±1), actually implies some-

what stronger conditions [11]. Specifically, the invariance of the symplectic metric

XM [N
QΩP ]Q = 0 is supplemented by

X(MN
QΩP )Q = 0. (39)

Hence,

X̂MNP ≡ XMN
QΩPQ (40)

is aG–tensor with mixed symmetry: it is symmetric inNP but it is not fully symmetric.

From the point of view of Sp(2m,R), the symmetric indices NP are in the adjoint

representation and X̂MNP is in the product (adjoint) × (fundamental), with the fully

symmetric tensor projected out.

These consistency conditions were found on the basis of a study of general gaugings

of maximal supergravities [12, 13, 14, 15, 16, 17, 18]. In particular, condition (40) is

required by supersymmetry of the action.

The application of this general procedure to the gauging of N = 4 supergravity

coupled to n vector multiplets has been recently described by Schön and Weidner [19].

The gauge generators are linear combinations of the generators of the N = 4 duality

algebra G = SU(1, 1)× SO(n, 6), as defined in expressions (33):

XαI =
1

2
ΘαI

βγ Tαβ +
1

2
ΘαI

JK TJK . (41)

In components,

XαI βJ
γK = ΘαI

ργερβ δ
K
J + ΘαI

LKηLJ δ
γ
β . (42)

12



Alternatively, as in eq. (40),

X̂αI βJ σM ≡ XαI βJ
γKΩγK σM

= ΘIα(βσ) ηJM + ΘαI[JM ] εβσ = X̂αI σM βJ .
(43)

The last equality follows from the invariance of the symplectic metric. The embedding

tensors

ΘIα(βσ) = ΘαI
ργερβεγσ, ΘαI[JM ] = ΘαI

LKηLJηKM (44)

respectively transform as (2× 3,6 + n) and (2, (6 + n)×Adj) of SU(1, 1)×SO(n, 6).12

In this symplectic frame, an electric gauging corresponds to the condition

ΘαI
β=2 γ=2 = 0

or to ΘIα (β=1 γ=1) = 0. It is left invariant by SO(n, 6), but not by SU(1, 1).

The analysis of N = 8 supergravity gaugings given in ref. [17] can be used to obtain

information of the N = 4 embedding tensor. The duality group of N = 8 supergravity

is E7,7, and the embedding tensor is in the product (fundamental)×(adjoint):

56× 133 = 56 + 912 + 6480.

Consistency of the gauging imposes however that the embedding tensor is in represen-

tation 912 only [17]. One of the consistency conditions applied to the embedding tensor

is then simply its projection into this representation only. Truncation from N = 8 to

N = 4 can be performed by removing all representations with SO(6, 6) spinor weights

in the embedding E7,7 ⊃ SU(1, 1)× SO(6, 6):

56 → (2,12), 133 → (3,1) + (1,66),

912 → (2,12) + (2,220), 6480 → (2,12) + (4,12) + (2,220) + (2,560).

We then infer that the embedding tensor includes two components transforming as

(2,12) and (2,220) only (220 is the three-index antisymmetric tensor). It will then

be expressed as a function of constant tensors ξαI [representation (2,12)] and fα[IJK]

[representation (2,220)]. Generalization to an arbitrary number of vector multiplets

is then simply obtained by replacing SO(6, 6) by SO(n, 6) and considering the same

tensor representations for this algebra.

Explicitly, the projection into the two relevant directions is as follows. First define

the three-index antisymmetric tensor13

fα[IJK] =
1

3

(
ΘαI[JK] + ΘαJ [KI] + ΘαK[IJ ]

)
. (45)

12Adj refers to the (antisymmetric) adjoint representation of SO(n, 6).
13SU(1, 1) and SO(n, 6) indices are moved using εαβ , εαβ , ηIJ and ηIJ . The conventions are

ξα
I = εαβξIβ , ξIβ = εβαξα

I and εαβεβγ = −δα
γ .

13



Write then

ΘαI[JK] = fα[IJK] −
1

(6 + n)− 1

(
ηIJΘα

M
[MK] − ηIKΘα

M
[MJ ]

)
. (46)

This linear condition eliminates the unwanted direction which would correspond to

representation (2,560) in the n = 6 case relevant to N = 8 supergravity. Similarly,

ΘIα(βγ) = −1

3

(
εαβΘσ

I(σγ) + εαγΘ
σ

I(σβ)

)
(47)

eliminates the unwanted direction (4,6 + n). This apparently leaves two independent

representations (2,6 + n), with tensors

ξαI ≡
1

(6 + n)− 1
Θα

M
[MI] and ζαI ≡

1

3
Θσ

I(σα), (48)

while N = 8 supergravity predicts a single representation inside the 912 of E7,7.

Imposing the linear condition (39) leads then to ξαI = ζαI or

X̂αI βJ σM = fα[IJM ] εβσ − ηJM(εαβζσI + εασζβI)− εβσ(ηIJζαM − ηIMζαJ) . (49)

The embedding tensors fα[IJK] and ζαI are submitted to a complicated set of quadratic

constraints ensuring closure of the gauge algebra, eq. (37).14

Notice that the gauge generators are

XαI =
1

2
fα I

JKTJK − ζJ
αTIJ − ζβ

I Tαβ. (50)

Hence, SU(1, 1) generators Tαβ are necessarily combined with SO(n, 6) generators, the

tensor ζαI acting as a common parameter.

In the particular case ζαI = 0 the quadratic conditions reduce to

0 = fαR[MNfαPQ]S η
RS , α = 1, 2 (no sum on α)

0 = f1 MNRf2 PSQ η
RS − f1 MNRf2 PSQ η

RS .
(51)

The first line indicates that f1 IJ
K and f2 IJ

K verify separately the Jacobi identity. The

second equation indicates that the generators of these two Lie algebras commute. A

way to solve these conditions [19] is to start with a semi-simple algebra
∏G(i), with

structure constants f
(i)
IJ

K
verifying Jacobi identities for each factor: f

(i)
[IJ

K
f

(i)
L]K

M
= 0.

The Cartan metric is such that this algebra can be embedded in SO(n, 6). The resulting

f
(i)
IJK = f

(i)
IJ

L
ηLK are then antisymmetric. The quadratic conditions (51) are solved if

f
(i)
1 IJK and f

(i)
2 IJK are proportional for each factor separately. In other words,

fα IJK =
∑

i

c(i)α f
(i)
IJK (52)

14See eqs. (2.20) of ref. [19].
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with real vectors c(i)α = λ(i)(cos δi, sin δi). The angles αi correspond to the phases found

by de Roo and Wagemans [20, 21] in their analysis of gauged N = 4 supergravity.15

Hence, in this class of gaugings, the theory depends on antisymmetric gauging

structure constants fRST related to the structure constants of the gauge algebra by

fRST = fRS
UηUT and submitted to Jacobi identities. With each direction R, a duality

angle (or duality phase) δR can be introduced provided the quadratic conditions (51)

are verified.

The assumption ζαI = 0 also implies ΘIα(βσ) = 0 i.e. the gauge algebra does not

involve the SU(1, 1) generators. Since SO(n, 6) is an invariance of the Lagrangian

(while SU(1, 1) is the true duality symmetry mixing gauge curvatures and duals), this

case should be considered as an electric gauging without any shift symmetry included

in the gauge algebra.

More general gaugings with in particular ζαI 6= 0 have not been extensively studied

yet.

6 N = 4 supergravity

This section summarizes the aspects of the N = 4 supergravity theory [22, 23, 24]

and of its reduction to N = 1 which are useful in discussing N = 1 string moduli

superpotentials. It mostly concentrates on the bosonic sector and on truncating the

theory in a N = 1 supergravity formulation, i.e. in a Kähler basis for the scalar fields.

The N = 4 super-Yang-Mills–supergravity system is most conveniently obtained

[25] from the action of the (locally) superconformal N = 4 Yang-Mills theory. This

approach reveals at the linear level the sigma-model structure of the scalar kinetic

terms and the nature of the electric-magnetic duality algebra.

6.1 N = 4 conformal supergravity

The starting point of the construction is the action of (locally) superconformal N = 4

super-Yang-Mills theory. This theory is obtained by superconformal calculus [26] of

two kinds of superconformal multiplets, the (Weyl) multiplet of gauge fields [27] and

vector supermultiplets. The superconformal N = 4 superalgebra is SU(2, 2|4), with

bosonic subalgebra

SU(2, 2)× SU(4) ' SO(4, 2)× SO(6).

15After rescaling λ(i) to one.
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The four-dimensional conformal algebra is SO(4, 2) while SU(4) ' SO(6) is the R–

symmetry acting on the four supersymmetries. Notice that there is no additional

U(1), as would have been the case for N 6= 4, with bosonic subalgebra SU(2, 2) ×
SU(N) × U(1). The superalgebra has sixteen supersymmetries and sixteen special

supersymmetries. The field theory includes then the following gauge fields:

Field Name Symmetry Status
ωab

µ Spin connection Lorentz Eliminated
ea

µ Vierbein Translations Propagating
fa

µ Special vierbein Conformal boosts Eliminated
bµ Dilatation gauge field Dilatation Gauge-fixed
Vµ

i
j SU(4) gauge fields SU(4) R-symmetry Auxiliary

ψi
µ Gravitino N = 4 supersymmetry Propagating
φi

µ Special gravitino N = 4 special supersymmetry Eliminated

They are submitted to “curvature constraints” and, in addition, to the Poincaré gauge-

fixing conditions of the unnecessary symmetries: conformal boosts, dilatations, and

special supersymmetry. The first four lines in the table include the fifteen gauge fields

of the conformal algebra. The next three lines include the fifteen SU(4) gauge fields

and the eight supersymmetry and special supersymmetry gauge fields. Fermions are

Weyl vector-spinors in the complex representation 4 of SU(4) (or in its conjugate):

γ5ψ
i
µ = ψi

µ ≡ (ψµ i)
∗, γ5φ

i
µ = −φi

µ ≡ −(φµ i)
∗.

The status column refers to the Poincaré theory, after imposing the curvature con-

straints (which eliminate ωab
µ , fa

µ and φi
µ) and after the Poincaré gauge-fixing conditions

(which apply in particular to bµ). Off-shell and on-shell (gauge) degrees of freedom are

then as follows:

Field Off-shell On-shell
ea

µ 4× 4− 4− 6− 1 = 5 2
bµ 4− 4 = 0 0
Vµ

i
j 15× (4− 1) = 45 0

ψi
µ 4× (42 − 4− 4) = 32 8

Total: 50B + 32F 2B + 8F

The subtractions in the off-shell counting refer to general coordinate transformations

(GCT), local Lorentz and dilatation symmetries for the vierbein, conformal boosts

for bµ, supersymmetries and special supersymmetries for the gravitinos. The on-shell

counting is for information only since it refers to a specific action.

To complete the Weyl N = 4 supermultiplet (128B + 128F off-shell fields), we need

the following 78B + 96F matter (i.e. non-gauge) fields:
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• The SU(1, 1)/U(1) dilaton sector: two propagating bosons (see paragraph 6.4).

• Complex auxiliary scalars Eij = Eji in representation 10 of SU(4), i.e. twenty

bosons.

• Thirty-six bosons in fields:

Tµν
ij = −Tνµ

ij = −Tµν
ji, Tµν

ij = −1

2
εµν

ρσTρσ
ij.

These fields are then in representation (1,3) of the Lorentz group. They are

complex and in 6 of SU(4).

• Twenty scalar bosons in (real) representation 20 of SU(4):

Dij
kl =

1

4
εijmnεklpqD

pq
mn, (Dij

kl)
∗ = Dkl

ij ≡ Dij
kl, Dij

kj = 0.

• Four Weyl spinors Λi = γ5Λi in representation 4 of SU(4) (sixteen fermions).

• Twenty Weyl spinors χij
k = −γ5χij

k in (complex) representation 20′ of SU(4)

(eighty fermions):

χij
k = −χji

k, χij
j = 0.

Out of the 128B +128F (off-shell) fields of the Weyl multiplet, the vierbein, the complex

dilaton, the four gravitino and the four spinors Λi propagate in the Poincaré theory.

On-shell, these fields describe 4B + 16F of the 16B + 16F states included in Poincaré

pure N = 4 supergravity. The missing twelve bosons are provided by six gauge fields

from N = 4 vector multiplets used to impose the gauge-fixing conditions leading to

the Poincaré theory.

6.2 Vector multiplets

The Weyl multiplet of N = 4 superconformal gauge fields exists in an off-shell for-

mulation. On the contrary, the vector multiplet only exists on-shell and the coupled

supergravity system is then a partially off-shell, partially on-shell construction. As

usual, since super-Yang-Mills theory is (globally) conformal invariant, the vector mul-

tiplets of superconformal and Poincaré supergravities are identical: AR
µ , ψ

R
i , φ

R
ij. The

gauginos are Weyl spinors in representation 4, ψR
i = γ5ψ

R
i = (ψiR)∗. The scalars are

complex and in (self-conjugate) representation 6:

φR
ij = −φR

ji = −1

2
εijklφ

R kl, φR ij ≡ (φR
ij)

∗. (53)
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Index R labels the vector multiplets. Each vector multiplet has 8B +8F on-shell states.

The globally N = 4 supersymmetric Lagrangian for the vector multiplets is simply

L = ηRS

[
−1

4
FR

µνF
µν S +

1

2
ψ

R i
γµ∂µψ

S − 1

4
(∂µφR ij)(∂µφ

S
ij)
]
, (54)

where ηRS is the constant kinetic metric.

Pure N = 4 Poincaré supergravity is then obtained by gauge-fixing of the super-

conformal theory with six vector multiplets. And N = 4 Poincaré supergravity coupled

to n vector multiplets follows from the superconformal theory with n + 6 vector mul-

tiplets. The gauge fixing conditions affect the scalar fields φR
ij, which have non-trivial

Weyl (dilatation) weights, and it turns out that they can only be solved if ηRS is the

SO(n, 6) metric,16 the six negative eigenvalues being associated with the directions of

the six compensating multiplets.

In the supergravity Lagrangian, the kinetic metric of gauge fields receives contri-

butions depending on φR
ij from the elimination of the auxiliary tensor fields Tµν

ij and

a direct coupling to the supergravity dilaton dictated by the electric-magnetic duality

SU(1, 1). The gauged supergravity theory has a scalar potential which adds a contri-

bution produced by the elimination of the auxiliary scalars Eij to a direct contribution

analogous to the D–term potential of N = 1 supergravity.

6.3 The scalar constraints

The vector-multiplet scalar fields φR
ij are submitted to two kinds of constraints. Firstly,

the auxiliary fields Dij
kl appear only linearly in the superconformal Lagrangian. Their

field equations are then constraints. They are in representation 20 and they couple to

a quadratic product of vector-multiplet scalars via the action term

e

4
Dij

klφ
R
ijφ

kl
R , φij

R = ηRSφ
ij S.

Their field equations imply then that the quadratic (symmetric) product of φR
ij does

not have a component in representation 20. Since 6 × 6 = 1S + 15A + 20S, only the

singlet component remains and the constraint is then

φij
Rφ

R
kl =

1

12
φmn

R φR
mn

(
δi
kδ

j
l − δi

lδ
j
k

)
. (55)

Secondly, the superconformal Lagrangian includes the Einstein term17

1

12

(
φmn

R φR
mn

)
eR.

16For the vector representation: R, S are indices for representation n + 6 of SO(n, 6).
17The canonically-normalized Einstein Lagrangian is − 1

2κ2 eR.

18



It will prove convenient to define

A = −1

6
φmn

R φR
mn, (56)

so that fixing dilatation symmetry amounts to require A = κ−2 (Einstein frame condi-

tion). One then finds in the Poincaré theory

φij
Rφ

R
kl = − 1

2κ2

(
δi
kδ

j
l − δi

lδ
j
k

)
. (57)

Altogether, twenty-one scalar fields have been eliminated by these constraints. The

local SU(4) symmetry can then be used to eliminate another fifteen scalars which,

together with those eliminated by the constraints, form the scalar sector of six vector

multiplets.

The scalar fields φR
ij are in representation (6,n + 6) of SO(6) × SO(n, 6) and the

constraints (55) and (57) are invariant under this group [SO(6) is the R–symmetry,

which is a local symmetry of scalar kinetic terms]. This structure produces a sigma-

model structure SO(n, 6)/SO(6)× SO(n) for vector-multiplet scalars [23].

6.4 The N = 4 supergravity dilaton and duality symmetry

This is the SU(1, 1)/U(1) sector of the N = 4 supergravity multiplet. Introduce two

complex scalar fields ϕα, α = 1, 2, and the constraint

1 = |ϕ1|2 − |ϕ2|2 ≡ ϕαϕα, (58)

with ϕ1 = ϕ∗1, ϕ
2 = −ϕ∗2. This constraint is clearly invariant under U(1, 1) = SU(1, 1)×

U(1). The abelian factor is the global phase of ϕα.

The standard solution to eq. (58) uses a complex scalar field S with relations18:

ϕ1 − ϕ2 =

√
2

S + S
, ϕ1 + ϕ2 =

√
2

S + S
S.

S =
ϕ1 + ϕ2

ϕ1 − ϕ2

,
ϕ1

ϕ2

=
S + 1

S − 1
.

(59)

A kinetic Lagrangian invariant under global SU(1, 1) and local U(1) transformations

is

L =
e

κ2
(Dµϕ

α)(Dµϕα) Dµϕα = (∂µ + iAµ)ϕα, (60)

Aµ being the U(1) gauge field. Eliminating Aµ with the constraint (58) leads to

Aµ = iϕα∂µϕα = −iϕα∂µϕ
α = −(S + S)−1∂µ ImS (61)

18There is at this stage an ambiguity S ↔ S in the solution.
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and the Lagrangian (60) rewrites as

L = −(S + S)−2 (∂µS)(∂µS) = − ∂2KS

∂S∂S
(∂µS)(∂µS), (62)

where the dilaton Kähler potential is

Ks = − ln(S + S). (63)

In the conformal supergravity Lagrangian, the prefactor κ−2 in the kinetic Lagrangian

(60) is replaced by the field-dependent quantity A defined in eq. (56). Expression (60)

appears then in the Poincaré theory written in the Einstein frame.

In the complex basis defined by the ϕα, a SU(1, 1) transformation is

ϕα −→ (Uϕ)α, U =

(
A B
B∗ A∗

)
, |A|2 − |B|2 = 1. (64)

Infinitesimally

U = I + u, u =

(
ia b+ ic

b− ic −ia

)
, (a, b, c real). (65)

[Compare with the SU(1, 1) contribution in eq. (31)]. The matrix

Φ =

(
ϕ1 ϕ∗2
ϕ2 ϕ∗1

)
(66)

is unimodular with constraint (58) and transforms under SU(1, 1) according to

Φ −→ UΦ, |A|2 − |B|2 = 1. (67)

It parameterizes an element of SU(1, 1).

The SU(1, 1) symmetry of the dilaton sector and the SU(1, 1) electric-magnetic

duality algebra are independent. They can however be identified to construct the

duality-invariant coupling of the supergravity dilaton to gauge kinetic terms. For in-

stance, in the notation used in section 4.2 [eq. (31)], the quantity

Φ−1

(
F + iG
F − iG

)

is an invariant if both SU(1, 1) symmetries are identified.

It may be useful to rewrite the SU(1, 1) matrix U in terms of three real parameters:

A = 1
2
e−iδ(s+ 1/s− it) = 1

2
(a+ d) + i

2
(b− c),

B = 1
2
e+iδ(−s+ 1/s+ it) = 1

2
(a− d)− i

2
(b+ c),

(68)
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with ad− bc = 1.

The SU(1, 1) transformation of S using the second parametrization in eqs. (68) is

S −→ aS − ib

icS + d
, ad− bc = 1. (69)

It acts on the Kähler potential (63) with a Kähler transformation. In terms of δ, s and

t, one has:

S −→ 1

s2
Sδ − i

t

s
, Sδ ≡

cosδ S − isinδ

−isinδ S + cosδ
. (70)

In particular:

δ = 0, t = 0 : S −→ 1

s2
S, δ = 0, s = 1 : S −→ S − it. (71)

Parameters s and t refer respectively to scaling and axionic shift. The angle δ generates

U(1) ⊂ SU(1, 1) transformations including S–inversion (for δ = π/2, 3π/2).

The electric-magnetic duality symmetry of ungauged N = 4 supergravity is gener-

ated by the SU(1, 1) algebra (27) which commutes with the global symmetry SO(n, 6)

of gauge kinetic terms. Gauging the theory destroys this SO(n, 6) symmetry and each

gauge curvature and its dual acquire in principle their own Sp(2, R) ∼ SU(1, 1) dual-

ity algebra, using the Sp(2, R)n subgroup of Sp(2n,R). The SU(1, 1)–invariant gauge

kinetic terms constructed with the dilaton matrix Φ, as outlined above, may then con-

tain up to 3n free parameters. These include n scaling parameters sR which can be

absorbed by field redefinitions, n parameters tR related to shift symmetries and n du-

ality angles δR. The presence of these angles does affect the consistency conditions on

the gauging since they explicitly appear in the (dilaton-dependent) kinetic metric of

the gauge fields.

7 Z2 × Z2 reduction to N = 1 supergravity

There are many ways to reduce supersymmetry from N = 4 to N = 1. In these notes,

the example of a Z2 × Z2 reduction is considered, as in string orbifolds with the same

point group. This truncation leads to a moduli sector with seven chiral multiplets

S, TA, UA (A = 1, 2, 3) for all string compactifications and compatible orientifolds and

D–brane systems. We can also include an arbitrary number of matter multiplets,

generically denoted by ZI
A, (I = 1, . . . , nA). The N = 4 sigma-model [SU(1, 1)/U(1)]×

[SO(n, 6)/SO(n)× SO(6)] reduces to the Kähler manifold

MZ2×Z2 =
SU(1, 1)

U(1)
×

3∏
A=1

SO(2, 2 + nA)

SO(2)× SO(2 + nA)
(72)
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(
∑

A nA = n). Since

SO(2, 2)

SO(2)× SO(2)
=
SU(1, 1)

U(1)
× SU(1, 1)

U(1)
, (73)

each complex modulus is associated to an SU(1, 1)/U(1) structure in the absence of

further ZI
A fields. In the Lagrangian, the truncation is performed by first rewriting the

scalar fields in an SU(3) basis,

φR A ≡ φR A4 , φR
A = (φR A)∗ =

1

2
εABCφ

R BC , (A,B, . . . = 1, 2, 3) . (74)

In the N = 4 supergravity multiplet, the three SU(3) non-singlet gravitino and vector

N = 1 multiplets are then truncated. Similarly, the scalar fields φR
ij submitted to

constraints (57) are truncated to N = 1 multiplets according to the Z2 × Z2 action on

the SU(3) and SO(n, 6) indices A and R, as in the sigma model truncation (72). We

then introduce three sets of 4 + nA complex scalars that we denote by

σ1
A, σ

2
A, ρ

1
A, ρ

2
A, χ

I
A, A = 1, 2, 3, I = 1, . . . . , nA . (75)

They are submitted to the Z2 × Z2 truncation of the constraints (57), which reads for

each A = 1, 2, 319

|σ1
A|2 + |σ2

A|2 − |ρ1
A|2 − |ρ2

A|2 −
∑

I |χI
A|2 = 1/2 ,

(σ1
A)2 + (σ2

A)2 − (ρ1
A)2 − (ρ2

A)2 −∑I(χ
I
A)2 = 0 ,

(76)

Their invariance is SO(2, 2 + nA) and they lead to the sigma-model structure (72).

These equations are solved in this basis by:

σ1
A =

1

2

1 + TAUA − (ZI
A)2

[Y (TA, UA, ZI
A)]1/2

, σ2
A =

i

2

TA + UA

[Y (TA, UA, ZI
A)]1/2

,

ρ1
A =

1

2

1− TAUA + (ZI
A)2

[Y (TA, UA, ZI
A)]1/2

, ρ2
A =

i

2

TA − UA

[Y (TA, UA, ZI
A)]1/2

,

χI
A = i

ZI
A

[Y (TA, UA, ZI
A)]1/2

.

(77)

These expressions depend on the real quantity

Y (T, U, ZI) = (T + T )(U + U)−
∑
I

(ZI + Z
I
)2 . (78)

As expected, the constraints eliminate six complex scalar fields.

19Taking κ2 = 1 and ηRS = diag ( 1n, −16 ) as the SO(n, 6) metric.
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7.1 The superpotential

Gauging supergravity in general leads to a Lagrangian with a scalar potential and mass

terms for the gravitinos. In the N = 4 case, these term read −(1/2)M3/2
ij ψµiσ

µνψνj +

h.c., with M3/2
ij = M3/2

ji. In terms of the antisymmetric gauging structure constants

fRST and of the associated duality phases δR, as defined by de Roo and Wagemans

[20, 21] (see section 5), the mass matrix is

M3/2
ij = − 4

3
ϕ∗(R) fRST φ

ikRφS
klφ

ljT , (79)

and

ϕ∗(R) =

√
2

S + S
(cos δR − iS sin δR) . (80)

As indicated above, to obtain the N = 1 gravitino mass term, we formally reduce

SU(4) to SU(3), splitting indices according to i = (A, 4), A = 1, 2, 3, and we select

ψµ4 as the N = 1 gravitino (i.e. we take ψµA = 0 in expression (79):

M3/2
44 = − 4

3
ϕ∗(R) fRST εABCφ

A RφB SφC T . (81)

After replacing the N = 4 scalars by the solutions (77) of the Poincaré constraints

truncated to N = 1, the holomorphic N = 1 superpotential W is obtained by equating

this expression with

m3/2 = eK/2W. (82)

Separating the holomorphic and the real contributions leads to the Kähler potential

K = − ln(S + S)−
3∑

A=1

lnY (TA, UA, Z
I
A) , (83)

while the superpotential is simply

W =
4

3

√
2 [cos δR − i sin δRS]

[ 3∏
A=1

Y (TA, UA, Z
I
A)
]1/2

fRST εABC φ
R AφS BφT C . (84)

It is a holomorphic function of (S, TA, UA, Z
I
A), once the N = 4 scalars from the vector

multiplets have been truncated to N = 1 and replaced by the solutions (77).

Discarding the ZI
A fields, the generic superpotential is a polynomial in the moduli

fields with maximal degree seven. In particular, each monomial is of order zero or one

in each of the seven moduli S, TA, UA. The superpotential can then have up to 27 = 128

real parameters, which are structure constants and duality phases of the underlying

N = 4 algebra20. These numbers can be identified with various fluxes of compactified

string theories.

20The N = 1 truncation of the scalar fields φR A associates to each fixed value of A = 1, 2, 3 only
four values of the index R, the four directions in each of the three SO(2, 2). Hence fRST includes
43 = 64 real numbers.
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Eqs. (83), (84) and (77) define completely the N = 1 effective supergravity with pa-

rameters fRST (gauging structure constants) and δR (duality phases), up to consistency

conditions on these parameters, as outlined in section 5.

8 String and supergravity moduli

To relate the construction of the effective four-dimensional supergravity described in

the previous sections with string compactifications and fluxes, we need first to consider

the Z2×Z2 orbifold reduction of the closed string sector, at the level of the fundamental

geometric moduli states. In this context, the massless spectrum (before fluxes/gaugings

are turned on) includes a string dilaton (string coupling field) ϕ, six metric moduli for

the six internal radii, and their seven supersymmetric partner, for a total of fourteen

scalar states corresponding to the supergravity fields S, TA, UA. The Z2 × Z2 orbifold

projection splits the six-dimensional internal space into three complex directions,

ds2 =
3∑

A=1

ds2
A,

each complex plane having a 2× 2 metric gA ab: ds
2
A =

∑2
a,b=1 gA ab dx

adxb. In complex

coordinates,

ds2
A =

1

4
dz2

A [gA 11−gA 22−2igA 12]+
1

4
dz2

A[gA 11−gA 22+2igA 12]+
1

2
dzA dzA[gA 11+gA 22],

and we define as usual

gA =
t̂A
ûA

(
û2

A + ν̂2
A ν̂A

ν̂A 1

)
, (det gA = t̂2A). (85)

In orbifolds Zn, n > 2, the absence of dz2
A contributions leads to gA 11 = gA 22 and

gA 12 = 0, or ûA = 1 and ν̂A = 0.

In the case of Z2 × Z2, the metric modes t̂A and ûA are always present. If not

eliminated by the orientifold projection, the fields ν̂A assemble with ûA in N = 1 chiral

supermultiplets with complex scalars

ÛA = ûA + iν̂A. (86)

The supersymmetry partners of the moduli t̂A must be found among the massless

modes of the heterotic ot type II NS–NS or R–R antisymmetric tensors. And two more

massless states give rise to the supergravity dilaton S.
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Dimensional reduction of the ten-dimensional Einstein term in the string frame on

the metric

gMN =

(
gµν 0
0 gij

)
, gij =

 gA=1 ab 0 0
0 gA=2 ab 0
0 0 gA=3 ab


clearly leads to a four-dimensional Einstein term with a dilaton and modulus-dependent

prefactor:

− 1

2κ2
10

e−2ϕ e10R10 −→ − 1

2κ2
4

e−2ϕ (t̂1t̂2t̂3) e4R4.

Rescaling the vierbein according to

gµν = e2ϕ(t̂1t̂2t̂3)
−1 g̃µν (87)

leads to the Einstein frame with gravitational Lagrangian − 1
2κ2

4
e4R4.

In each string compactification, it is essential to correctly identify the four-dimen-

sional supergravity fields S, TA, UA in terms of the string massless modes. With this

identification, the dependence on string moduli of, for instance, flux-induced potential

contributions can be translated into a dependence of the effective superpotential on the

chiral superfields S, TA and UA. It allows then, using the generic superpotential (84),

to associate a given flux number with the corresponding gauging structure constant

and then to completely translate the data of the ten-dimensional configuration into a

certain gauging of the effective supergravity.

The appropriate identification strongly depends on the type of string theory (het-

erotic or type II) under consideration. It also depends on the orientifold projection

used with type II strings. To conclude these notes, we briefly discuss this question,

starting with the simplest and familiar case of the heterotic strings.

8.1 Heterotic strings

Heterotic gauge kinetic terms lead in four dimensions to

−1

4
e−2ϕ e10FµνF

µν −→ −1

4
e−2ϕ (t̂1t̂2t̂3) e4FµνF

µν (88)

both in Einstein and string frames. The natural definition of the real part of the chiral

multiplet S is then

ReS = e−2ϕ t̂1t̂2t̂3 ≡ ŝ . (89)

The supersymmetry partners of s, t̂1, t̂2 and t̂3 are the components of the two-form

field21 Bµν , B56, B78 and B910. Their kinetic terms derive from the three-form closed

21We use the simpler notation where (5, 6, 7, 8, 9, 10) replaces respectively (A = 1, a = 1; A = 1, a =
2;A = 2, a = 1; A = 2, a = 2;A = 3, a = 1;A = 3, a = 2) for the six internal directions.
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string Lagrangian term proportional to

e−2ϕ e10 g
MNgPQgRSHMPRHNQS −→ e−2ϕ e4(t̂1t̂2t̂3)g

µνgρσgλτHµρλHνστ ,

e−2ϕ e4(t̂1t̂2t̂3)g
µν(t̂1)

−2Hµ56Hν56 ,

e−2ϕ e4(t̂1t̂2t̂3)g
µν(t̂2)

−2Hµ78Hν78 ,

e−2ϕ e4(t̂1t̂2t̂3)g
µν(t̂3)

−2Hµ910Hν910 .

To simplify, this has been done assuming ν̂A = 0. In the Einstein frame, after rescaling,

these four-dimensional kinetic terms become

e−4ϕ e4(t̂1t̂2t̂3)
2gµνgρσgλτHµρλHνστ ,

e4 (t̂1)
−2 gµνHµ56Hν56 ,

e4 (t̂2)
−2 gµνHµ78Hν78 ,

e4 (t̂3)
−2 gµνHµ910Hν910 .

These are the kinetic terms expected from Kähler potential

K = − ln(S + S)−
3∑

A=1

ln(TA + TA),

with the identification

ReTA = t̂A (90)

and with the chiral S dualized to the dilaton linear superfield L which includes Bµν

and the real scalar

C ∼ ŝ−1 ∼ e2ϕ (t̂1t̂2t̂3)
−1. (91)

Isolating the dilaton dynamics corresponds to the choice TA = UA = 1. Hence, the

heterotic dilaton theory is described by the chiral superfield S with Kähler potential

K = − ln(S + S). In the language of N = 1 conformal supergravity with chiral

compensating multiplet S0 (with unit weights), the Lagrangian is

−3

2

[
S0S0 e

−K/3
]
D

= −3

2

[
S0S0 (S + S)1/3

]
D
. (92)

The dual version with linear multiplet L is [28]

−
[
(S0S0)

3/2L−1/2
]
D
. (93)

With these identifications, one easily obtains for instance that the superpotential

generated by fluxes of the three-form field depends on UA. Consider for instance the

component H689, which is allowed by the Z2 × Z2 projection. After rescaling to the
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Einstein frame, the Lagrangian term quadratic in H(3) leads to a contribution to the

scalar potential of the form

∼ e4 e
K û2

1û
2
2H689H689 ,

where e−K ∝ ŝ
∏

A(t̂AûA). The effective N = 1 superpotential includes then a con-

tribution W ∼ H689 U1U2. Eight components of H(3) survive the Z2 × Z2 projection.

They correspond to superpotential terms proportional to 1, UA, U[AUB] and U1U2U3. It

is a nontrivial test of consistency to verify that the complexification required by N = 1

supergravity is already present in the ten-dimensional theory. The relation with the

gauging structure constants is finally established by replacing the N = 1 chiral fields

by N = 4 constrained fields. In our example,

UA = i
√
Y (ρ2

A − σ2
A), 1 =

√
Y (ρ1

A + σ1
A)

−→ W ∼ −Y 3/2H689 (ρ2
1 − σ2

1)(ρ
2
2 − σ2

2)(ρ
1
3 + σ1

3).
(94)

Comparison with the general expression (84) of the superpotential indicates which

fRST correespond to the flux H689. In this example, all duality phases vanish and the

superpotential does not depend on S: this is of course a general property of heterotic

moduli superpotentials.

Eqs. (89) and (85) define the real fields ŝ, t̂A and ûA as a function of the string

dilaton ϕ and the metric radius modes (in the string frame). These definitions will

apply as well to the type II cases discussed below. It is however only true for heterotic

strings that ReS = ŝ, ReTA = t̂A and ReUA = ûA, where S, TA, UA are the four-

dimensional chiral fields with Kähler potential (83).

8.2 Type IIB strings, orientifold with D9 (and D5) branes

In this orientifold, gauge fields live on D9 and D5 branes and the massless component

of the four-dimensional antisymmetric tensor arises from the R–R field C(2). Its kinetic

Lagrangian is

∼ e4[e
ϕ (t̂1t̂2t̂3)

−1]−2 F(3)µνρF(3)
µνρ, (95)

after the vierbein rescaling to the Einstein frame. This suggests that C(2)µν belongs to

a linear multiplet with real scalar component

C = eϕ (t̂1t̂2t̂3)
−1. (96)

The kinetic term of a gauge field living on a D9–brane is

−1

4
e4 e

−ϕ (t̂1t̂2t̂3)FµνF
µν , (97)
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while for a gauge field living on a D5 one obtains

−1

4
e4 e

−ϕ t̂A FµνF
µν . (98)

These results hold in the string and Einstein frames. These gauge kinetic terms define

the chiral fields s = ReS ∼ C−1 and tA = ReTA in terms of the string dilaton and

metric modes, according to

s = e−ϕ t̂1t̂2t̂3 =
√
ŝt̂1t̂2t̂3 , t1 = e−ϕ t̂1 =

√
ŝt̂1/t̂2t̂3 ,

t2 = e−ϕ t̂2 =
√
ŝt̂2/t̂1t̂3 , t3 = e−ϕ t̂3 =

√
ŝt̂3/t̂1t̂2 .

(99)

The Kähler potential is again eq. (83).

The massless components C(2)56, C(2)78 and C(2)910 have kinetic terms

∼ e4 e
2ϕ t̂−2

1 gµνF(3)µ56F(3)ν56 ,

∼ e4 e
2ϕ t̂−2

2 gµνF(3)µ78F(3)ν78 ,

∼ e4 e
2ϕ t̂−2

3 gµνF(3)µ910F(3)ν910

(100)

in the Einstein frame. This is as predicted by Kähler potential (83), with identification

ImT1 ∼ C(2)56, ImT2 ∼ C(2)78 and ImT3 ∼ C(2)910. The UA fields are as in heterotic

strings.

8.3 Type IIB strings, orientifold with D3 (and D7) branes

The kinetic term of gauge fields living respectively on a D3 or a D7 branes are of the

form

−1

4
e4 e

−ϕ FµνF
µν and − 1

4
e4 e

−ϕ (t̂1t̂2 or t̂2t̂3 or t̂3t̂1)FµνF
µν . (101)

There are four massless modes of the R–R tensors C(0) and C(4), with kinetic terms

∼ e4 e
2ϕ (∂µC)(∂µC), ∼ e4 e

2ϕ (t̂1t̂2)
−2 (∂µC5678)(∂

µC5678),

∼ e4 e
2ϕ (t̂1t̂3)

−2 (∂µC56910)(∂
µC56910), ∼ e4 e

2ϕ (t̂2t̂3)
−2 (∂µC78910)(∂

µC78910).
(102)

The identifications of the N = 1 chiral fields ReS = s and ReTA = tA in terms of the

string dilaton and metric modes are then:

s = e−ϕ =
√
ŝ/t̂1t̂2t̂3 , t1 = e−ϕ t̂2t̂3 =

√
ŝt̂2t̂3/t̂1 ,

t2 = e−ϕ t̂3t̂1 =
√
ŝt̂3t̂1/t̂1 , t3 = e−ϕ t̂1t̂2 =

√
ŝt̂1t̂2/t̂3 .

(103)

The Kähler potential is again eq. (83) and ImS ∼ C, ImT1 ∼ C78910, ImT2 ∼ C56910

and ImT3 ∼ C5678. The UA fields are as in heterotic strings.
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8.4 Type IIA strings, orientifold with D6 branes

The orientifold acts on the internal space-time coordinates according to zA → −zA.

Coordinates x5, x7 and x9 are odd. The metric modes νA are then projected out.

The fourteen massless moduli are the string dilaton, the six diagonal modes t̂A and

ûA, four R–R states C6810, C679, C589 and C5710 and three NS–NS states B56, B78 and

B910. The kinetic terms indicate that ReTA = t̂a as in heterotic strings and that the

scalars TA get complexified using the NS–NS states.

Gauge field on D6–branes have kinetic terms

−1

4
e4 e

−ϕ
√
t̂1t̂2t̂3/û1û2û3 FµνF

µν . (104)

The gauge coupling define ReS = s, and ImS ∝ C6810.

Finally, the expressions of the R–R kinetic terms suggest the identifications of the

N = 1 chiral fields ReS = s and ReUA = uA in terms of the string dilaton and metric

modes:
s = e−ϕ

√
t̂1t̂2t̂3/û1û2û3 =

√
ŝ/û1û2û3 ,

u1 = e−ϕ
√
t̂1t̂2t̂3û2û3/û1 =

√
ŝû2û3/û1 ,

u2 = e−ϕ
√
t̂1t̂2t̂3û1û3/û2 =

√
ŝû1û3/û2 ,

u3 = e−ϕ
√
t̂1t̂2t̂3û1û2/û3 =

√
ŝû1û2/û3 .

(105)

The Kähler potential is again eq. (83).

It is interesting to remark that in type II strings, the dilaton dynamics is governed

by the Kähler potential

Ktype II = −4 ln(S + S). (106)

As in the heterotic string, the dynamics of the string dilaton ϕ is isolated from moduli

couplings by choosing t̂A = ûA = 1 [i.e. assuming unit value for all six radii in the

string frame (85)]. In type IIB strings, this leads to S = T1 = T2 = T3, UA = 1. In

the type IIA orientifold, this corresponds to S = U1 = U2 = U3 and TA = 1. And in

both cases, the Kähler potential is given by eq. (106). This Kähler potential, which

differs from the heterotic one, reflects the particular expansion in powers of the string

coupling field which characterizes open strings or type II strings and orientifolds.
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